AD=A105 078 POLYTECHNIC INST OF NEW YORK BROOKLYN F/6 9/2
SOFTWARE MODELING STUDIES« VOLUME IV. A STATISTICAL THEORY OF C==ETC(U)
JUL 81 A E LAEMMEL F30602'78-C-0051
UNCLASSIFIED POLY-EE-80-004 ' RADC~TR=81-183-VOL-t

("enp END
10-81
ome

Y

a %
Y [§ BN 2"

™
)

AMAlU

B RILE'CORY

Q..f\

RADC-TR-81-183, Vol IV (of four)

A @

Final Technical Report
July 1981

SOFTWARE MODELING STUDIES, Vi .. <

A STATISTICAL THEORY OF COMPUTER
PROGRAM TESTING

Polytechnic Institute of New York

Arthur E. Laemmel

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC

ELECTE
ocr 5 1981

- ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griffiss Air Force Base, New York 1344|

g1 10 o 00

D

s ¢

Th:l.s tepbrt has been reviewed by the RADC Public: ‘Affairs Office (PA) and
is releasable.to the National Technical Information Service {NTI1S)., At NTIS
it will be _rcleasable to the general public, including foreign nations.

RADéiiB—81-183, Vol IV (of four) has been reviewed and is approved for
publication.

APPROVED: . .7) oL
‘(.6((- 4 v-‘:.:;t Lpy o
ROCCO F. IUORNO T S SRR UL
Project Engineer) C ' o ' '

APPROVED: ./ - N D | g

JOHN J. MARCINIAK, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: Za.p %4,

JOHN P. HUSS
Acting Chief, Plans Office

l/pg 7[3“/

P T (9

If your address has changed or if you wish td bé removied from the KAuL
mailing list, or if the addressee is no longer employed- by your orgtni.nrinn,
please notify RADC. (ISIE) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

e ren

Do not return this copy. Retain or destroy.

: PNCLASSTETED

SECORITY T ASSIV-JATICN OF THts PAGE When Du-‘f‘mar—d)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

) Ay REPCRT NUMBER 2. GOVT ACCESSION RO 3 az:.a*r;»«rs CATALOG NUMBER

Léf RADCJTK—Sl—lSB, Vol IV (of four)’ K\;{‘ 2o o]

P 4. TITLE rand Subtitfe) , S, TYRE OF REPORT & PERIOD.COYERED ‘/

¢ | SOFTWARE MODELING STUDIES . - ! " |Final Technical Repert ~ i
‘A STATISTICAL THEORY OF COMPUTER PROGRAM January 78 ——Octader 80 . /
TESTING - NGOG REPORT numaER | |

3. AGTMONS,) B CANTRACT.IR GRANT NUMBER(S)

e ety o

: i}% F .5 Y EF-80-004 /

)

Lacmmel

o

Arthur ¥,

; /- | F30602-78-C-0057, #

3 PERFORMINDG JRGANIZATION NAME AND ADDRESS » ') PROGRAM ZLEMENT PRQIEC”

32E A 4 WORK NIT NUMBERS

T ASK

Polvtechni-s Institute of New York ‘ /
333 Jav Street : I.'H‘,V , , ’ .
yoetr) . SVO4T A
Brooklvn Y 1120] ARG
11, TTNTR0LL 1% ZFFICE NAME AND ADDRESS : - Tl REegRY 2aATE
Rome Alr Development Center (ISIE) e Jluly 1981
e ; ;
Gri:fiss AFB NY 13441 | nuwmERorReRs
T
T wi- TTRIN L 3LTNCY N AME 3 ADCRESS(H different from Tuntroiling Jtfrce; 1 1S SEZUYRITY I_ASS ‘of this repor::
i
Same e 'j [FUNCLASSIFIED
1/ ra .. i 154 DECL_ASSIFICATICN DOWNGRADING
vy ‘ ! . ScEnuiE
— - iN/A

16, DISTRIBUT'Swn 3TATEMENT ‘of thi« Heport)

Approved Tor public release; distribution unlimited

17 CISTRIBUTION STATEMENT ‘of the abstract entered :n 53! k 20 :f dilterent from Report)

Sane

8. SLUPPLIMENTARY NOTES

RADOC Project Engineer: Rocco . Inorno (1511)

19. KEY #QRDS «Continue on reverse side if necessary and 1dentifv by block number,

Program Testing
Testing Strategy

Program frrers
Randoir Test ing

Software frror

Modelw

'robabilityv of Failure
rogram Correctness

rZontinue on reverse side (f necessary and :Jentify bv block number)

Program testing is studied for maximizing the relinhility of computer

N 22 ABSTRACT

propgrams. Several formulas are derived to outicat. the number of tests
ve pdred to say that a progsram being tested ‘s corrcct with a siven !
ot ohilitve Strateprices to select those te t o v which winimize t he
T Cilite of program ervor while lfceping 10 carhoer of tests fixed, are
) ’-th\I.
LY

Do "IN 473

TOITION OF ' NOV 65 15 OBSOLETF "UCTASSITITD

TLALSIFICATION OF THIS PAGE When Dara Enm,.ﬂ/

'é;f"‘

Y08 7L

oy

TABLE OF CONTENTS

Abstract

.0

2.0

[ntroduction

Detinitions and Objectives
2.1 Definitions
2.2 Objectives

Models

3.1 Elementary Model

3.2 Model with Unequal Probabiiitices

Model with Statistical Dependence
Hlustrative special Case

Optimum Testing Strategy {(in Section 3.3)
.t Interpretation of "Bug" in the Last Model

e
O WO

[T BTN

Random Testing

4.1 Random Test Models

4.2 Optimum Testing Strategy (in Section b 1)
Alternative Definitions ot Lrror

Conclusions and <ommoents

References

—_—

—

—
SR OO L Wi Ww

—_

[g—
o ~31-1

Figure 1

Figure

Figure

Figure 4

Figure 5

LIST OF FIGURES

Plot of P, vs. W from the Model of Equation 2

3]

Plot of O

w

Bug Covered vs. Number of Tests

Probability of Lrror vs. Number of (Random) Tests

Specific Examples of Error Probability Curves

20
21

SRnEE LVAIRRAI- s g, 3 i I eunpcun SOl e 5. LA S IOANEON SGMIN i S gt i cb RSN

A STATISTICAL THEORY OF COMPUTER PROGRAM TESTING

Arthur f.. Laemmel

Abstracl

Most compuler programs are lested with some of the possible sets of
input data, but few can be tested with all possible input data. Passing
such a partial test cannot insure that the program will always function
correctly; we can perhaps say that the probability of failure is less than a
specified amount. it is the purpose of this report to derive several for-
mulas for the above probability. Aiso, in some cases an optimum testing
strategy can be derived which minimizes that probability of failure.

1.0 Introduction

There are three methods for maximizing the reliability of computer
programs: (1) use a systematic procedure which makes it difficult for
errors o occur during the writing of the program, (2) prove that the
program works correctly by some formal or automatic process, and (3) test
and debug the program thoroughly before passing it on o tne user. Most
programmers will use some combination of these methods, and in fact some
procedures involve clement:: of more than one method. ‘The present report
emphasizes testing, but tirst some remarks wih be made aboul program
writing and proving.

(1) Writing Correct Programs: While no one intentonaliy inserts
errors in his program, it is undoublediy truc thal many
pcople would produce more reliable program= witn less eftort
if they were taught better programming technigues. How-
ever, it seems obvious that the average programmer should
test his proygrams even if he ecxercises the maximum oi care
and uses the best techniques.

(! Froving bProgram Correctness: There are several teasons
why a formal procedure for proving program correctness
carnot be relied on 1o insure absence of crrors in practicai
situstions: (1) a uniform algorithm for proving the cor-
reciness of an .rbilrary program can be shown to be m-
possible, being essentially equivalent to Turing's halting
problem; (i) even for sonviable sub-ciasoes of the correct-
ness-proving problem, the usual method (some improvement
on Herbrand search) is s¢ time consuming as to be imprac-
tical; (iii) there is alwavs a possibility ol ¢rror in the
proving program, or in applving it t¢ the program being
tested.

(3) ‘Testing Computer Programs: In view ol the ditticulties of
validating a computer program by programming techniques or
formal proof methods, it is belicved that some mount of
testing will always be necessar Phe purpose o0 this
report is to describe a model whics shows the relaticnship
between errors of different type. and the propability that
they will cause a program to fail, and also to suggest op-
timum testing methods which mitimice the probability of
program failure.

hroughout this report it is assumed Uil a computer program can be
tested and that it will either pass or tail the test It s also assumed that
a tester and a user will interpret failure of the o gram i exactly the same
way. For example, tailure mighl mean onc of the toiiowing:

i) the program "bombs"™ completely.
P an obvioasivo wrong answer s Give.
aoneanber o dinccutate noine lee b e

1v)
V)

It must also be decided whether the program alone is being tested, or
whether the program and algorithm is being tested.
mainly to the latter, but the results can be suitably interpreted so as to

N o "
R N e R

BIA Sh

the numbers are correct, but the format is wrong.
the program works perfectly, but a side effect causes failure
in another program.

apply to the former.

The extent to which a computer program (possibly including the under-
lying algorithm) can be tested varies from application to application and is
Whether or not a statistical model applies
to a particular case depends very strongly on the tester's knowledge of just
what answer should be produced by the program.

usually not a yes - no situation.

bilities of the user's prior knowledge of the correct answer are:

1.

The identification of an error is often not unique.
by the fact that error messages from a compiler or run-time monitor can
direct the user away from what he considers as the error.
the compiler says "line 15, operator missing" the error might really be "line

The exact answer is known betorehand. An example would
be a math package for a new computer. Accurate tables of
cos, arctan, log, etc. have beer available for many years.

A proposed answer can be checked to see if it is a correct
answer, but the correct answer is not known beforehand.
Programs which calculate the roots of transcendental equa-
tions are examples of this category.

Answers for certain special input values are known before-
hand. This is very common. For example, if a program is
supposed to output the capacitance of an arbitrary two
conductor transmission line, it would be natural to test it for
coaxlal cylinders,

The answer is not known beforehand, nor can it be accur-
ately checked for any combination of input values. How-
ever, certain consistency relations among different outputs
are known. For example, it may be obvious that the pro-
gram should generate an output which is a monotonically
increasing function of the input. A test which detects a
decrease indicates an incorrect program, but no amount of
testing can indicate a correct program.

Absolutely nothing is known about the answers which should
be produced. This is probably very rare. FEven here, the
theory presented in this report applies if the program
"bombs," i.e., a fatal or non-fatal run-time error message is
produced.

This report is directed

Some of the many possi-

This is illustrated

For example, if

Eh, stotement lerminator missing.” in many cases the syntax can be cor-
rected inoseveral places 1o get the program thru the compile stage, bul one
place usually contains the reported error, and another place is usually
where the error should be corrected. Similar comments can be made about
semantic errors detected at cun time. In some cases an error might equally
well be corrected in one of several places. tor example, a common PL. 1
error might be corrected by either declaring K to be a FLOAT number, by
using XK instead, or by forcing a necessary type conversion. This type ot
ambiguity in defining the crror is not believed to cause any difficulties with
the tormulas developed in this report, provided the parameters are in-
terpreted correctly.

2.0 Definitions_and Objectives

2.1 Definitions sSome basic aspects of the testing process apply egual-
v well o a computer program or 10 a physical device. Por this reason the
program or device being tested will sometimes be called the module. After
the mulle has been constructed, il is checked by a tester and then em-
ployead U users T probability of error, P, which ovcurs during use
s givea by ¢

P o= P I (1
e lm u '

where Pm s the probability thiat the tester misses all of the residual bugs
in the modul:, and Pu 5 the protabiiity that the user then encounters one
of the overlooked bugs. 1f exhausiive testing is possible then Pm =0,

since it is assumed that it a bug is found it then is corrected and the
whole process is started again. In most cases of interest exhaustive testing
is not possible or practical. [f there are no bugs then all of the probabili-
ties are zero and this possibliity appears as a special case in the analvsis
to follow. Some alternate definitions of "probability of error”™ are given in
Section

)

e tives Pefore presenting the betaded mattoms L0 results,
ihe cujecuves of this work will be stated wmine exphatly. Roughly, the
dims are to provide an estimate of the number of tests required o say
that the program being tested is correct with a given probability, and to
provide a strategy so that a given number of tests aro chesen most ettec-
Pivel

Uhe first objective is met by deriving o Tunct-onal roinionchip beiween
the number of tests and the probability of crroi There e several pos-
Sibilitres tor defining probability of crrors, the o usea here might be

Cdled the "nrabability of embarrassment™ far e ftooor s T tester is not
o

.
A1 STE RN E RTINS B B

e

1) he discovers a bug and returns the program to the writer

ii) he approves the program in spite of its having one or more
bugs, but the user does not encounter one of the remaining
bugs. The tester is embarrassed if

ii1) he approves the program and then the user encounters an
undetected bug. If the model is designed appropriately, the
probability of error decreases as the number of tests is in-
creased according to Eq. 30 below.

The second objective is met by choosing those tests which minimize the
expression derived for probability of error (defined as above) while keeping
the number of tests fixed. Specifically, the principal question which must
be answered here is: should testing be concentrated on input data combi-
nations which are most likely to be chosen by the user, or input data
combinations with a large a priori probability of causing program failure?
The answer is that tests should be applied to both of these combinations of
input data in a ratio which can be calculated from Eq. 33 below.

Actually, several simpler models are also analyzed before that aes-
cribed by [gs. 30 and 33. All of these expressions conlain many para-
meters, and curves are plotted for selected values. No real data were used
for the parameters, but this should certainly be done in the future.

3.0 Models

3.1 Fblementary Model A simpie case might be the following: The
module has N possible inputl values, and each of these are equally likely o
be chosen by the tester or by the user. Of these input values, W cause
improper functioning ol the module, but neither the tester nor the user
knows which inputs cause e¢rrors or even how large W is. The tester
chooses t inputs at random without Keeping a record ot inputs previously
tested, i.e., sampling with replacement. Under these circumstances PU =

W/, pm = (1 - W/N)" and

_ W

_ W W W ()—WL/N (2)
e N ’

) pi
‘ NN

(1 -

A plot of P, vs. W is displayed in l'ig. 1. If the testing is to do any
good, i.e., to reduce Pv significantly less than W/N, then it is necessary
that

. N .
I 2> YV (3)
In many applications it is found that satisfying the inequality of Lq. (3)
requires a very large number of tests t, and that our intuitive feeling is
that P(, is acceptably small in spite of testing using far fewer tests than

indicated.

-4-

-

&

Pe Pe = FRROR PROBABILITY
r N = NUMBER OF INPUT
! VALUES
’ W = NUMBER Ot INPUT
' VALULES CAUSING
! MALPFULCTIONS
i 1 = NUMBER OF INPUTS
‘ TESTED
} ! Wo = WORST VALUE GF W
! i

| .
0 W N W

9]

PIGURE 1o PLOT OF Pe VS, W FROM THE MODLI. OF EQUATION 2.

It will continue to be assumed that the tester passes no information to
the user about which inputs were tested. It will 4lso be assumed that each
test either succeeds or flails and that there is no additional intormation
which would permit sequential sampling methods. Sampling without replace-
ment would slightly lower P, o

(N-W)I(N-1)! W

{ZN—WT)? N t < N-W
poo= (1)

m L0 t > N-W

Note that this method requires that the terter Keep o recorsd o inputs
slready tested, or that he avoids duplication by ather means.

'he particular type of error to which l’(; pertains must be borne in

mind to avoid confusion with other possible detinitions ot error. 't W=N all
inputs to the module cause malfunctions but l’(‘ = ¢ according to bquations
i2) and (1). This is true because the tester removes user buygs with each
test, and continues until all tests are exhausted. In this case the tester
always rejects the module (provided only that t =~ 0y and =0 the user cnno!
experience a malfunction. Note that I’(‘ is neither the probability juser has

a4 maliunctiong nor the probability juser has o oedionction | ofosaer accepls

modui- . Rather, P, is the probability tuser B maltue ot sind tester
aces s medulets It the number of et 15 D g and b e iy with
S ©ootis done, then the value ciw o whoo oo e b

N
o~ t+)

W_ =

I'rom Eq. (5) or Fig. 1, it can be seen that as W - 0 then P_ - 0 also.
This is so because for small W there is a small chance that th§ user will

encounter a faulty input. Similarly as W =+ N then Pe - 0 also because

there is little chance that the tester will accept the module. Of course, the

last case is undesirable for reasons other than the value ot Pe i.e., the
user has a small probability of receiving a released program.

3.2. Model with Unequal Probabilities The model described in the
preceding section is too simple to apply to most practical testing situations:
some inputs are more likely to fail than others, and the probability of one
input failing may not be independent of another input failing. Often a
single bug may cause many inputs to fail. The tester may not choosc the
inputs to be tested randomly, but rather in such a way as to utilize his
knowledge ot the prior failure probabilities. The user may not tie {ree to
choose more reliable inputs; in fact, he may be constrained by the problem
to use less reliable inputs. The model 1o be described here inciudes three
events, the last two being independent of wich other but dependent on the
first.

(1) A programmer constructs a module which has an error pat-
tern ¢ with probability P(«). o might be a binary vector
(ul, YRERY aN) with o = 1 meaning input i fails and o = 0
meaning input i tunctions correctly.

(2) A tester lries certain inputs to the module and accepts the
module with probablllt\, R(accept | a). The tester passes nho
information concerning which inputs were tested to the user.

(3) A user selects one of the inputs and the module talis with
probability Q(fail | «). The error probability defined pre-
viously is now given by

P o= 2 P(o) Q(fail | o) R(accept | v) (6)

acA

where A is the set of all possible error poticins,

o illustrate, if there are N input vaiues then A consists of JR ele-
ments. Assume P(o) is O for all A except for the first w:

wy = (11,1, 0,0,...,0) (bis
< W 3 - N- TH

and fet the probability of the user selecting input i be q;- Then

=

Q(fail | a,) = i:zlqi

Assume the tester selects his inputs randomly, choosing input i with proba-
bility ri.* Then

W
R{accept | ay,) = 11 (1 - r.) (7)
W W
P,o=C 2qg> I (1 -r
S)

[f q; = 1/N and rJ. = /N this reduces (approximately) to the elementary
model given above:

w
)

- W _t
Po = n (1 -3

Another, fpore useful, torm for P(«) than Lq. (6a) is obtained by assuming
that the i input malfunctions with probability p,- Then

(8)

N u; l-uti
Pla) = 11 p;" (1 - p;)
i=1
N
Qfail | «) = £ a.q,
) i;] J)
N o,

Ra | a)y= 1 (1-r.) !

i=1 J h

*
The formula also applies if ry is given the interpretation "input i is tested
and the response is noted to be wrong by the tester.™ Specifically o= 0

might mean cither that input i was not tested, or that it was tested and
an error was not detected.

The two products can be combined in evaluating P(,:

N N ‘
]- ii:ll t i(url)

where
.
vy = o b (1 O
Filap) = p; o (1-pp) 71 (-rpi

This reduces to

N 1) N pl(]_rl) ¢
P o= NI (l-pir.) 2Q —F-mv— (4
¢ = Tt Ry

It the tester selects t inputs deterministicaily, and if the inputs are per-
muted so that these occur first, then

t N
P = 1t (1-p)) ¢ paq, (103
YR Pt M

An optimum testing strategy is obtained if the inputs are permuted so that
the expression is minimized. The first factor suggests testing inputs with
the largest P but the second factor suggests lesting inputs with the

largest P;q;- Let the above expression be abbreviated as Pe = PmPu and
note that Pu is the probability of the user getting an error on an untested
input. Consider the effect of adding one more input to the test.

l.et

fo = PP)(Pympyay)

I3
~~
fel
=
+
o
jon
S
©
o~

R R Ll

Thus, the criterion is to select the input with the largest

(qk + l’u)pk (11,

As can be seen, this provides a weighted compromise hetween selection on
the basis of Py OF Q)P alone.

3.3 Model with Statistical Dependence Computer programs usuaily
fail tor a whole set of input values as a result ot a single bug. 1t is more

e <%

realistic to assume that failures due to different bugs are statistically
independent rather than failures for different input values.
single oversight might cause a square root program to fail for all negative

numbers. Let

0 if the it

If B, is the probability of the jth bug, if M is the number of possible bugs,
and if 6]. (j = 1,2,...,M) is the pattern of actual bugs, then (note defini-
tions of P, Q, R in the probability of event statements (1), (2), and (3) of

Section 3.2)

P, =2 P6) QU | 8) R(u I)
T8

This is analogous to the corresponding formula in « given above.

M 61 1-0l
P(6) = il ﬁi (]-B]-)
i=1
N M
QUE | 8)= = qgll- N (l-0,0)]
i1 i k=1 jkTk
M N OQiei
R(a | 8) = 1 1 (l-ry)
i=1 2=1

Combining and rearranging gives

N M
P o= : q ZA(6,,6,,..
¢ g1 g T2 i=]
where
0. N Jg,.0.
N | 176 _ 2i i
Fi(ei) = gi 1 ﬁl) I QE] (1 rQ)

and

Rt Soaii il 0
e —— et e e A

{ 1 if the th bug causes failure for input i

bug doesn’t atfect input i

., BM) n Fimi)

For example, a

(12)

Here,

(13)

e A b

M
A]-(Gl,..., GM) = 1 - knl (1 Ul\ek)

The summations over 6, are for only two values (0,1) and can be carried
out 1o give

M N % N M N Ogi
-ﬂllﬁﬂiﬂ(lr)]Zqﬂ[lB+(10)Bﬂ(1r)] (14)
€i=1 2=1 1111

If deterministic testing is used (r=0,1) over the first t inputs:

M N M
Pe = 1 (1- ﬁ) 2 q [1- " (]-O‘iBi”
i=1 J=t i1 '

wWhere II' refers to a product over terms involving a value of i such that

Gij = 1 for at least on: value of j in the range j = 1,2,...,t, and where "
refers to the other valves of i. The bugs can be permuted so that 1 <1i <
1 implies Ojl = 1 for at least one value of j from 1 to t and 1t < i < M implies
it = 0 for all values of j from 1 to t. Then

M T M M

nm = n and 1" = 1

i=1 i=1 i=1 i=1+1

The problem is then to minimize

T N M
PO=H(B)Zq[1-ﬂ(1oB) (15)
i=1 =t+1) =1+]

A graphical interpretation of the above is portrayed in Fig. 2, and
illustrates how different inputs excite various bugs. For cxample, input 2
excites bugs numbered 6,7,8 and 9. Bug numbered 8 can only be dis-
covered through the application of inputs 2 or 4.

A clearer picture of how Pe depends on the amount of testing, t, can

be obtained by deriving an upper bound from Eq. (15). For most cases of
interest this upper bound will be tight, i.e., a good approximation. Multi-
ply thru by the first product in Eq. (15):

-10-

BUGS (i)

t INPUTS () i

THESE 8LGCS
; ARE
G

1]

; , OVERED
; | BY INPUTS
, ! 2,3
! j
lo?— ; | ; — |
! : f s
S

$-1-¢ ¢
(.

FIGURE 2. PLOT Or Gji

-11-

_ _ ’ , B ."

; . i by ot AN S : Cals A Sl A ATE
il aniitoR S-SV M6 -l PR N - NSRS ALIT R S SR AR S - PO .

N 1 M

; =te1 D=l i=1
where
1]
z Jl N
5)i L”ji PP M
Now observe the following:
M A . .
: - _ﬂ (I‘\jipi) - ._H (1-51) since in <1
=1 =1
N t ~ 1
2 q. - Qty <1 (note Q(t) =1 -5 ~11if q, =%)
j=t+1 J - N)oN
T
1 i=1
i=1
Combining these:
T
- 2 .
' i=1 Bi
Pe < Pe =e - RO an
where
M
- 3 Bi
M i=1
RO = (1'Bi) ~ €

i=1

From the way the Oji matrix was permuted, it can be seen that t » M (mono-

tonically), and from Eg. (16) these, in turn, imply Pe + 0 (monotonically).

-12-

It Eq. (17) is a good approximation to Eq. (16), then the rate at
which P, = 0 can be seen to be exponential.

3.4 shasrrative special Case A simple special case will illustrate
the above formulas, and is useful in getting a rough idea of the number of
rests and the probability of error. Suppose that each of the M bugs orcurs
with the same probability of error, 8, and affects the same number of input
value . b Suppose further that the pattern of input errors is the most
atticuft o detect with the given number of tests, t, i.e , that the erior
subsets are as "disjoint" as possible. 1f the iests are distributed most
eflecively over the inputs, each test nill detecr Mb/N bugs. The wsling
witll result i M - Mbt N andetected huge, and T = Mbi/N (assuming
bt © NY. Thus

_ MUY
~ SN T - M .
Pt Tt A = fj (l"?/
Aot NZh thas roae o Sl Gl s viak? ‘!-e Siltdil COMpa 20
calbic aath g ooty 1ee B must o be made comparabic o 0

more general assumplions concarning tho parameters, ard wita o
choice of tests, t might be a much smalier traction of ~.

3.5 Optimum Testing Strategy (in Section 3.3) For a given i, ihat

seicction of inputs 1o be tested “which minimizes P, will be defined as the
optimam festing strategy. From Eq. (15), and intuition, one might be
tempted to test the t inputs most likely tc be chosen by the user, ' u.
minimizing the factor 2q. However, for most cases of interest. this ajpi-

»roach would be futile. [f the qJ are even very roughly equal, the number

<1 rossible inputs N i3 so huge that it would be impossible to test enouagh:
S tnem 10 reduce

N

z Q.

t+1

cognificantly below unity. Essentiallv, the q. only influence the testi
~trategy thro the fact that the square bracketted term in Eq. (15) depends

o

The first term in fLq. (15) is the most important for values of !he
paramelers of most interest, and as was shown above, it is minimized (ap-
croximately) by choosing test values to maximize

-13-

b, = 2 b! (]9(])
i=1
£ o= 1p if =B (19b)
I the e cqual, P is then minimized (approximately) by maximizing .

This is essentially the covering problem of switching theory and operations

research.“’“] A set of inputs i ¢ [is said to cover a set of bugs j ¢ J if
Uji =1 for everv j in J for at least one i in [. Referring to Fig. 2, input

4 covers bugs 3, 4, 5, 6, 7 and 8; and input pair 1,4 covers bugs 3, 4,

5, 6, 7, 8, 10, 11, 12 and 13. These inputs are oplimum in that they
cover the mosi bugs possible. Thus, using these optimum choices, 1 = 6
and 10 for ' =1 nd 2. However, the optlimum set of 3 inputs is not

obtained by odding that input which would cover the most additional bugs.
Inputs 1, 3, 4 cover only 12 bugs, but inputs 1, 2, 3 cover 13 bugs. The
covering problem is usually stated as minimizing the number of tests re-
quired to cover all buygs (in the present terminology), and no general
algorithm tor its solution is known. The process described above, repeat-
edly adding thal test which causes the greatest increment in bugs covered,
is usually reterred to as the "heaviest-first algorithm."

A sketch of 1 vs. t for the present example is shown in Fig. 3.

Note that the number of covered bugs added at each step is a de-
creasing function of t. If t is very large, the bugs being covered might
be those affecting only a single input, such as divide-by-zerc bugs.

The rate of increaseof Pe with increasing t is certainly of great inter-

est, and one simple functional dependence can be given using the above
ideas. Define 1, Ty,... @S those values corresponding to t=1,2,... when

optimum or near-optimum testing strategy is used. Eq. (19a) can be re-
written

T, t
E,= 2B = 2 B 20)
s bk K
where
Tk
B, = 2 B 1, =0
K 1’ 0
Ik_1+1
From Fq. (15) with the second and third terms approximated by unity, or L
from Eq. (17) with RO approximated by zero:

BUGS

M

HEAVIEST -FiRST

!
h

FIGURE 3. BUGS COVERED VS. NUMBER OF TESTS

o

nl— -

_——

4 PP(L) ~ g (2])

N
=
>
A e p— g ha e s

Now if Bk i assumed to have a form which is a decreasing function of k

| and which can be finitely summed in closed form, a convenient relation can
be found. tor example, if Bk = c/k

JRPSICEN——

o) ; : [i .

Ie(t) . (22)
This shows what might be expected in practice, a gradual decrease of Pe
over many decades ds U is increased over several decades. When some
relations are plotted, eg. [q. (2) or Eq. (18), they exhibit very sudden
and deep drops in Pe when certain values of t are approached, and this is
not the behavior to be expected except in the simplest programs. Of

course, Eqg. (22) does not have enough parameters, but similar formulas can
be found which do have enough parameters.

3.6 _Interpretation of a brogram Bug There are many possible ways
to interpret a bug.

1. Formally, a bug is simply a subset of input values which fail
together when the program is used, e.g., the region 82 - 4 AC < 0 in
solving a quadratic.

2. A bug might be a careless typing error, such as A+B instead of
' A-B.

3. A bug might be an incorrect statement or a defective subroutine.

4. A more flexible definition of bug should allow such tiings as
omitting a check for dividing by zero. These bugs of omission are harder
to handle with fixed M and matrix %

5. A bug might be defined as a distinct path thru a flowchart. A
popular testing procedure is to run at least once thru every such path,

and if these are the only bugs included, this constitutes a complete cover
and Pe = 0. Unfortunately, the model would then not be very realistic

because Pe would never actually vanish except in the most triviai programs.

-16-

6. If programming can be identified with decisions, a bug is a wrong
decision.

4.0 Random Testing

4.1 Random Test Models Some of the difficulties involved in relating
the number of bugs discovered and the number of tests made can be avoid-
ed if the tests are chosen randomly rather than deterministically. Optimum
strategies can still be tound if the probabilities of choosing the inputs to be
tested are not equal. The probability of error Pe for random testing has

already been found in Eq. (14) above. Let Sy be the probability that the

tester chooses the £'th input at any particular test. If the number of tests
is t, then the probability that the 2'th input is tested during the series of
t tests is

rp=1-(-s t

eI I
(g,-;) i

)
Note that the 5, sum to unity, but that each r, can range from zero to
one. It is helpful to define

N Oyi
A= N (1-sy) (24)

2=1 i

which is the approximate probability ot a single test missing the i'th bug.
Note that Ai is certainly no greater than unity. ¥Fq. (14) can now be¢
rewritten in terms of s, A and t.

M N M 0..B. t
P(t) = N (1-BBAD 2 g [1-T (1 - Jl—‘fﬁ—t)] (25)
i=1 =1 =t 1-B;+B,A

As the number of tests is increased the probability of error approaches
zero

Lim Pe(t) =0

t oo

If no tests are made

N M
P@)=1- 32q. 1 (l-0.8. 26
) 1 4 i:l(%ib;) (26)

It is casier to see the importance of different terms in Eq. (25) by examin-
ing the asymptotic form for large t:

\l Mo B,

P : : WL
P.(t) = 1T (1-B,) 2 S A (27)
¢ het Ml e
where
N
W, =2 q, 0,
! J:]. | Jl

The quantity Q is the probability that the user encounters an error from
the i'th bug. Since each s, is very small an exponential can be used to

express A: 2
N Ty -Si
A.= 0 (i=x,c " =0 (28)
P P
where
N 1 |
S. =y 2 s,0, 1 <y < ———F (29)
=1 2T gy
max
Note that if the tester uses the same probabilities as the user then
Si:in. If this assumption is made, if the B are small, and if Qi takes on 1
only a few distinct values Ql' Qz,..., Qn' then the asymptotic form of
Eq. (17) can be approximated by
- ~ n 'th
Pe(t) ~ 2 Bkl\'kae (30)

k=1

where j
Nk is the number of bugs with a probability of discovery Qk
(These bugs which have probility Qk will be called a "block".)

and
By is the average probability of bugs in the k'th block being

introduced by the program writer.

No loss of generality is obtained if the Qk are arranged in order of

decreasing magnitude. Eqg. (30) clearly represents a decreasing function of
t, but it is not so apparent that the decrease is more than 1/t than e¢xpo-
nential over the range of interest. To see this, note that each term in
Eg. (30) reaches a maximum as a function of Qk at Qk = 1/t. For each

-18-

.

t a certain term in the sum will be dominant and values of k both larger
and smaller than this dominant term will contribute relatively small amounts.
This leads to an approximate formula

N o
Pell) ~ e e
where
= L
tk = Qk

If the product Bka Is approximately independent of k, then P will de-
crease approximately as l/tk. The decrease is exponential below t:l,’Qmm.
but this value could be very large indeed. For example, if the inpul is a
32 bit number, and if a bug causes an error for a single input value, then
Q - 232
min)

Such a bug would be very hard to detect by random testing, but hv
the same token it would be very unlikely to cause a user error unless the
user favors that value for some reason. The behavior of Egs. (30) and
(31) is sketched in Fig. 4 and Fig. 5.

Fig. 5 shows the way in which the probability of error Pe decreases
with the number of tests t. The parameters were chosen to illustrate the
following cases:

i) Pe decreases slowly at first, then rapidly

i) P, decreases gradually throughout the range

iii) P_ decreases rapidly with the first few tests, then many

more tests are required to obtain a further decrease.

As might be expected, in case (i) above most bugs are difficult to
detect, in case (il) bugs are evenly distributed, and in case (iii) bugs are
either very easy or very difficult to detect.

Program bugs have been divided into four, and in some cases five,
classes, indicated by k in the following

(‘)k is the probability of detecting a class k bug

by Is the probability that a user has introduced a class k bug

Nk is the number of possible class k bugs.

-19-

Pe= PROBABILITY OF ERROR

tsNUMBER OF TESTS {

] FIGURE 4. PROBABILITY OF LRROR VS. NUMBLR OF (RANDOM) TESTS

Pe=PROBABILITY OF ERROR

t=NUMBER OF TESTS

4 6

/
5,.0002, .0001,.0002, 05

5,.0002, . 00C2, OCC2

64 256 1024 4096 (6384 55573

-7~
g ;
o i
o -8-
o |
- ‘.
~ok
f
s
-0k
!
!
-1
'IGURE 5.

SPECIFIC
(from Eq.

EXAMPLES O ERROR PROBABILITY Curvis i
(30), see text for explanation of parameters)

N i . . b iaun anliiy = =TT

The paramel: Wi is always 0.1, .01, .00l and .0001, except where 5 |
- classes are present in which case (‘)k is 0.7, 0.1, .01, .01, .001, and

.000L. Shown on the curves is the product ﬁka for each of the four or

five classes. For example, the curve marked 1,1,1,1 applies to these 4
E | Cases:

N

Wi B K Q By K
0.1 05 20 0.1 .01 100
01 09 20 .01 .005 200
. 001 R 20 001 .002 500
LU s 20 . 0001 .001 100
I TR ST D S S 'S
0.1 01 100 0.1 .002 500
Ll 001 1000 01 .01 100
NINT! 001 1000 .001 .01 100
Luig] 01 100 .0001 002 500

Fase of detection, as reflected in Qk' depends largely on the number of
inputs a bug effects.

4.2 Optimum 'esting Strategy (in Section 4.1) Even though the

inputs 1o be tested are to be selected randomly, an optimum strategy exists
in that the probabilities of testing various inputs can be chosen so as to

L minimize P(:. The asymptotic form expressed by Eq. (27) can be rewritten
_ l\/l Bi 'tSl
> = - 5 e) g
Pt (1-8,.) i=L1 1'51 Qe (32)

The quantities B, and Q, are fixed by the problem, but the s; can be chos-

en to minimize P_, at least insofar as they depend on the s, (see Fq. {
(29)). ¢ . @

The optimum s can easily be found for the special case where

Oji = 6“, i.e., where“each bug atfects only one input. The problem is to
minimize the asymptotic form (with some additional approximations): !
f= 2 Bqe
i+l

while keeping constant

The method of Lagrange multipliers gives the equation

O:‘gf_. +A_a.g: - 3qute.

ask ask

Skt+7\

After eliminating A to insure that the s; sum to unity, this gives
1,1

Sy =Nt Zn (chqk) {33)
where
1 N
nc=- N iil 2n Biqi

This solution shows that if a small number of tests are made, the toster
should favor the inputs most likely to be used and most likely tc be in
error, but that if a large number of tests are to be made the tester should
select the inputs with an essentially uniform distribution. Even where a
non-uniform distribution of tests is indicated by Eq. (33), the tester should
distribute his tests more uniformly than the user because of the logarithm
(assuming the By do not deviate too markedly from uniformity).

The optimum testing strategy when T is a delta functon (each bug

affecting only one input) can be quite misleading for the more general case.
[t may be quite impossible to make the S, in Eq. (32) either independent of

i, or (even logarithmically) proportional to the Q].. Also, if one returns to
the more general Eq. (25) or Eg. (17) and attempts to choose the Sy to

minimize Pe or Pe, it is found that the best value for s, is either zero or

£
one and that these values depend on an unrealistically detailed knowledge of
Toi- This is really the same as the optimum deterministic testing discussed

in Section 3.5.

5.0. Alternative Definitions of Error

The definition of error which was used above may not be suitable for
all purposes, but related probabilities can easily be calcuiated from the
equations given. Define two events as follows:

E. is the event thal a user employs the module once and encounters a
failure:

-23-

le is the event that a tester operates the module t times and does not

encounter a ftailure, t.e., the tester accepts the module. The subscript m
is mnemonic tor “missed," since bugs are always assumed to be present with
some probability, and therctore br 39‘.m§ is the probability that the tester

has missed ! huygs, i.e., mcorrectly accepted the module.

Fhree dillerent quantities which might be interpicted as the probabil-
ity of use¢r error are tabulated below (Table 1) for the various models which
have been analyzed. The etffectiveness of the tesling process can be
judged by comparing the ftirst with the last two. Note thst the last,

Pr{EulEm} is alwavs greater than the second, Pr{llut‘,mj = Po' This tact
might lead to . 50 o conditional probability, Pr”‘ul;m
where P is soui ae o tester rejection and where there is a large proba-

i, In some cases

bility of module buyg ..

One is tlempted o regard the goal here as minimization of Pr{Eu},

regarding the avoidance of user error as of most importance to the user.
But remember this report seeks an optimum testing method, and that this is
different trom and does not preclude previously using an optimum program-
ming method. The latter will minimize user error, but will not generally
remove the need for testing in addition.

6.0 Conclusions and Comments

[t is believed that defining what is meant by the probability of a pro-
gram error, and presenting a model which permits its exact -calculation
(Eq. (15)) will provide the nucleus around which a theory of software reli-
ability can be built. The purpose is not merely to get a formula into which
numbers can be plugged to give a probability of error -- this does nothing
to reduce errors. Rather it is anticipated that by classifying different
types of bugs, errors and test results, and by showing how they interact
gro?ram(rjning systems can be improved and optimum testing procedures can
e found.

Most reports on program testing select the test data so as to traverse

each path in the program at least once.[3’4] The approach described in
this report might seem to be directed at selecting test data according to the
problem specification. A near-optimum strategy may be to select test data
randomly, since this seems to be a fairly efficient solution to the covering
problem, but to also make sure some lest points are in various distinct data

domains (e.qg., B2 - 4AC < 0) and to also make sure each program path is
traversed. In addition, it is desirable to concentrate test data at points
known to be more likely to be selected by the user. These requirements

are often contradictory, but optimum compromises are suggested by
Eq. (11), Section 3.5, and Section 4.2 above (provided the stated assump-

-24-

tions are met and the required parameters are available). Also formulas
derived give some idea of how many tests need to be made to achieve a
given reliability.

If further work is to be done along the lines of this report it is sug-

gested:

1) Data be gathered so as to verify the derived relations be-
tween the number of tests and the error probability, espec-
ially as in Section 4.0.

2) Another model can be developed in which a partial knowledge
of the bug-input matrix o is assumed. This would lead both
to a more easily applied optimum testing strategy, and to a
method of sequential testing in which the last test points are
chosen according to the results of the first test.

.0 References
M.L. Balinski, "Integer Programming: Methods, uses, computations,”
Management Sci., Vol. 12, p. 253, November 1965.
Min-Wen Du, "A way to find a lower bound for a minimal solution of

the covering problem," IEEE Trans. on Computers, Vol. 21, p. 317,
1972.

J.C. Huang, "An approach to program testing," Comput. Surv.,
Vol. 7, p. 113, September 1975.

W. Miller and D.L. Spooner, "Automatic generation of floating-point
test data," IEEE Trans. on Software Engr., Vol. SE2, p. 223, Seplem-
ber 1976.

-25-

....N_:.::HJLL A0 ~

10 wold |

i

QNG D
uoneuwxniddy

burysoy
:) wopue}
+ i L

. AA0GE 0
asedy [radg

| duapuadap
JROTISIINYS
Yl

1{PRRL !

0= 0" Nzl

D RS

I3 AN

JaK

ToSVUn A0 winsg
T4zl ;
Wy - :

sanrpgrqodd
ainyie]
ienbaun

SN T,
w = d
santigrgoad
; aanying
enbj

——— 4

vt
P
s

SO I

o

\?‘ﬁ S \s
Ny

Mg : 1ApOIY

e 4 — .

o

SEN; 108N
yIne)

1o Anjigeaodd

COPADOW oy 2l 1o Agediueng

RRAAR)

TPASENASID S[OPOW Y] $9ZTdPWwWnS | dlqe]

50590552095 90 9 ICAF ALK A LA LA LA A 1

MISSION
of | i
Rome Air Development Center

RADC plans and executes research, development,. test and
Selected acquisition proghams in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering suppont within aneas of technical competence “
48 provided to ESD Program 044ices (POs) and other ESD &%
elements. The principal technical mission areas are |
communications, electromagnetic guidance and control, sun-
veillance of ground and aerospace objects, intelligence data]
collection and handling, information system technology, -
{onospherdic propagation, solid state sciences, microwave g -

physics and electronic neliability, maintainability and
compatibility.

